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Abstract

ABSTRACT

This report presents the evaluation of the Saturn S-IVB Static
Firing Test Program that was conducted at the Douglas Aircraft
Company, Sacramento, California. The static firing program
consisted of a series of short and full-duration engine firings
to prove major design parameters of the propulsionfsystem and
also to verify the integrity of the hydraulic, pneumatic, and

electrical control systems.

This report is a contractual requirement as defined in Douglas
Report No. SM-41410: Data Submittal Document, Saturn S-IVB
System dated March 1965, It was prepared by the Saturn S-~IVB

Test Planning and Evaluation Committee for the National

Aeronautics and Space Administration under Contract NAS7-101.

DESCRIPTORS
DSV=-IVB Sacramento Test Center
Battleship Vehicle Test Stand Beta 1
Systems Testing Beta Complex
Saturn S-IVB Static Firings

21 February 1966
iii



PREFACE

The purpose of this report is to document the Saturn S-IVB
Battleship Static Firing Test Program. The static firing
program was conducted at the Douglas Aircraft Company,
Sacramento Test Center, Sacramento, California for a period

of from 18 September 1964 to 20 August 1965.

This report, prepared in compliance with the National
Aeronautics and Space Administration Contract NAS7-101, is
published in accordance with Douglas Report No. SM-41410:
Data Submittal Document, Saturn S-IVB System dated Marcﬁ 1965.

21 February 1966
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Introduction

INTRODUCTION

This report was prepared by the Saturn S-IVB TP&E (Test Planning and
Evaluation) Committee for the National Aeronautics and Space Administration
under NASA contract NAS7-101. This report presents a detailed evaluation

of the S-IVB battleship static firing test program.

The battleship tank was installed on the Beta Complex test stand No. 1 on
18 Dacember 1963. Battleship buildup and checkout activities proceeded
concurrently with test stand, Test Control Center, and facility equipment

installations and checkout.

The J-2 engine was installed on the battleship tank on 4 Jﬁne 1964. Check-
out of the battleship, GSE, and support systems was completed by mid-
September. Saturn S-IVB/IB battleship configuration tests were performed
between 18 September 1964 and 14 May 1965. Saturn S-IVB/V battleship

configuration testing was performed between 19 June and 20 August 1965,

The S~IVB/IB static firing test program consisted of four full duration
and six short duration firings. In addition, 17 other tests (cryogenic
loadings, chilldown, and environmental tests) were conducted. The S-IVB/V

test program consisted of two full duration and five short duration firings.

The battleship vehicle assembly was removed from the Beta Complex test

stand No. 1 on 3 September 1965.
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SUMMARY

This section contains a summary of the battleship test program. The count-

downs are discussed briefly and the evaluations are summarized.

Prior to all static firings, leak checks and complete functional tests of
the pneumatic, propellant, aft environmental control, electrical power
distribution, and sequencer systems were successfully completed. Refer to

Appendix 3 for the battleship test history.
2.1 Test Summary

2.1.1 Cold Flow and Chilldown Testing

The cold flow and chilldown tests (figure 2-1) consisted of a series of
nonfiring tests conducted to establish and evaluate operating procedures
for propellant loading, engine purging, venting, and a chilldown sequence
for proper engine start. Four countdowns, CD 614000, 614002, 614003, and
614004, were fequired for these tests.

2.1.2 Propulsion Development Firings

The propulsion development firings consisted of a series of shakedown
firings ranging from a 10-sec firing to a full-duration firing. These
firings were performed to establish engine operation, countdown procedures,
and engine start procedures. The firings were also used to determine and
evaluate the performance of the J-2 engine with the S-IVB stage. Data were
obtained to evaluate the performance of the PU, propellant tanks pressuri-
zation, and the pneumatic control systems. In addition, data were obtained
to evaluate vib:ation and acoustical effects. Six countdowns (CD 614005

through 614010) were required for these tests,

2.1.3 J-2 Engine Temperature Conditioning Tests

During the J-2 engine temperature conditioning tests (CD 614011 through
614019) which were conducted per Rocketdyne's engine chilldown procedure,

an apparent LH2 pump stall developed. This problem was investigated during
the next nine countdowns and upon completion of the tests, DAC had developed

a satisfactory chilldown procedure.
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2.1.4 Saturn S-IVB/IB System Development Firings

The system development firings were conducted to evaluate the performance
of the engine, hydraulic, pneumatic, pressurization, and PU systems. Data
were obtained to finalize all operating procedures, engine parameters, PU

parameters, and pressure and chilldown procedures.

These tests consisted of CD 614020 through 614025, 614028, and 614030

through 614032. One ambient and two hot gimbaling tests were also conducted.

2.1.5 Saturn S-IVB/V System Development Firings

The system development firings were conducted to determine engine restart
capabilities and to evaluate the propellant repressurization and PU systems,
Data were obtained to establish loading and venting procedures for the
ambient helium repressurization system, and to verify minimum chilldown
requirements for engine restart after simulated orbital coast period
shutdown. These tests consisted of seven countdowns: 614033 through
614035, and 614041 through 614044, One ambient and two hot gimbaling tests

were also conducted.

2.2 Evaluation Summary

2.2.1 Engine System

Chilldown and loading of the engine start tank and control sphere for both
the S-IVB/IB and S-1IVB/V were successfully demonstrated. The LOX and LH2
recirculation systems adequately chilled the engine pumps and provided

pump inlet conditions well within the required start boxes in both S-IVB/IB

and S-IVB/V tests.

Thrust chamber chilldown was adequate to meet Rocketdyne's original engine
start requirement for the thrust chamber temperature. However, as shown by
the results of an early test (CD 614007), this requirement did not guarantee
a satisfactory engine start. Subsequent special chilldown tests demonstrated
that additional parameters (lower tube temperatures) should be included in
the start requirements when there is a hold period between chilldown and

engine start.
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The S-IVB battleship program demonstrated the ability of the Rocketdyne J-2
engine to function on the S-IVB stage. The engine performance showed no
large or unexplainable deviation from the manufacturer's acceptance data.
The four full-duration tests that were used for the S-IVB/IB analysis showed
satisfactory engine start, steady state, and cutoff operation of the pro-
pulsion system., The engine response to the propellant utilization valve
movement was also satisfactory. The S-IVB/V engine conditioning and re-
start requirements were demonstrated by two tests. The flow integral
technique of cryogenic calibration was established and verified during the

battleship test program.

2.2.2 Oxidizer System

The originally designed flight pressurization (cold gas) system was changed
during the battleship test program because it could not maintain the LOX
tank ullage pressure above the desired minimum pressure of 37 psia during
the pressurization system start transients. In the new (hot gas) system,
the orifices controlling the helium flow through the J-2 heat exchanger

are now located downstream of the heat exchanger, producing a significant

reduction of LOX tank ullage pressure drop during the engine start transients.

Aside from the start transient problem, the LOX pressurization system
functioned adequately and satisfactorily maintained ullage pressure so that
NPSH (net positive suction head) requirements were met for all battleship

tests.

Cold flow testing had demonstrated that the performance of the LOX re-
circulation system was adequate for S~IVB/IB type missions. Results of the
S-IVB/IB battleship hot firings confirmed cold flow results by showing that,
during all tests, the available NPSH at ESC (Engine Start Command) met the
start requirements. Results from the S-IVB/V battleship test indicated that
the LOX recirculation system is able to satisfactorily accomplish a dry

duct chilldown, which is a primary requirement for S-IVB/V type missions.

2.2,3 Fuel System
Throughout all S-IVB/IB and S-IVB/V type battleship tests, the LH2 tank

pressurization system performed adequately. The LH2 tank ullage pressure
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was maintained within acceptable limits which resulted in LH2 tank NPSH re-
. quirements being met on all tests,

The LH2 recirculation system proved to be adequate for S-IVB/IB missions
during cold flow tests. Results were confirmed during the S~IVB/IB battle-
ship hot firing tests.

The ability of the LH2 recirculation system to successfully accomplish an
S-IVB/V type dry duct chilldown was demonstrated during S-IVB/V battleship

countdowns when all engine start requirements were met.

2.2.4 Pneumatic Control and Purge Systems

Throughout all battleship testing, pneumatic control was successfully main-

tained and all purges were successfully accomplished.

During the early cold flow tests, problems developed with the stage pneumatic
control module which required rework. Therefore, during the S-IVB/IB tests,

pneumatic control and purge supply were maintained from GSE supply.

During S-IVB/V tests, the rework module was reinstalled and the pneumatic
. system was proved adequate for pneumatic control, purge operations, and

~= leakage makeup.

2.2.5 Environmental Control System

Tests were conducted to verify that the environmental control system could
adequately purge the aft skirt and interstage area to an oxygen content
level of 4 percent by volume, or less, in a reasonable time. The tests
indicated that this level was reached in less than three minutes. This
indicated that little mixing occurred during the initial period of the
purge and that the GN2 flow was a blanket effect that pushed the air from
the interstage. Tests were conducted and verified that the aft skirt and
interstage thermo-conditioning and purge system could maintain the tempera-
ture of all electronic equipment mounted on the aft skirt within their
correct operating ranges. Also verified was that during S-IVB/V operation,
the helium bottle used for purging the propellant pumps seal cavities could
be controlled adequately with respect to maintaining its enclosure outlet
temperature above 77 deg F. During the thermal verification test the APS

'®

pg 19
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(auxiliary propulsion system) outlet temperatures were within the design
limits of 87 +5 deg F. The temperature of the APS at finplane I was
slightly cooler than that of the APS at finplane III; this lower temperature
was typical of most of the temperatures measured on the finplane I side of

the manifold.

2.2.6 PU System
The PU system functioned properly on all S-IVB battleship firings. Pro-

pellant mass was determined by the PU system, level sensors and a flow
integral analysis. Each method of analysis proved good repeatability and
had good agreement with the other analyses. The PU mass sensor non-
linearities were similar for the three countdowns considered. The PU
valve command and position history simulation was in close agreement with
the actual command and position histories indicating good accuracy of the

nonlinearity curves.

2.2,7 Data Acquisition System

The data acquisition system for battleship testing consisted of flight-type
transducers hardwired to a ground instrumentation system and recorded on
magnetic tape. The recording system consisted of digital and constant
bandwidth FM. Strip charts were provided for real time display of redline
and cutoff parameters. Operation of the instrumentation system was
satisfactory as indicated by its 95.9 percent valid data acquisition. No
problems were experienced with the battleship stage instrumentation that

would affect its use on a flight stage.

2.2.8 Electrical System

The stage electrical control system operated satisfactorily throughout the
battleship tests. The sequencer performance was as expected. The electrical
systems that were not included in this program were the range safety, ullage

rocket ignition and jettison systems, and APS control.

The electrical power system consisted of two forward power supplies, two aft
power supplies, two inverters for the LOX and LH2 chilldown motors, and a

static inverter/converter. The forward power supply No. 1 was not used.
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Forward power supply No. 2 operated satisfactorily supplying 2.7 amps prior

to engine ignition and increasing to 3.45 amps after engine start.

Operation of the aft power supply No. 1 was within expectations. The current
surged to 28 amps during start sequence and maintained current levels be-

tween 8 to 12 amps during engine steady-state operation.

The aft power supply No. 2 which supplied 56 vde to the chilldown invertaers
and the auxiliary hydraulic pump, operated successfully. The current in-~
creased from 50 amps to 74 amps when the pump started to pressurize the
accumulator. The current decreased to approximately 44 amps when the

accumulator reached full pressure.

The chilldown inverters were not installed during the early part of the
battleship program but they were successfully used in the S-IVB/IB and

S-IVB/V tests. The only problem noted was the erratic speed of the LH2
chilldown pump during S-IVB/V chilldown tests.

Inverter phase voltages were nominally 52 vdc and the phase currents indi-
cated 35-40 amps start transients dropping to 10-15 amps during steady-state
operations. Phase frequency was 408-410 amps and the inverter temperature
varied between 525 and 545 deg R. All data were within the expected range.
The static inverter/converter operated satisfactorily and all parameters

were within their prescribed tolerances.

2.2.9 Hydraulic System

The hydraulic system was evaluated for four full-duration firings; CD 614025
and 614030 were for the S-IVB/IB; and CD 614043 and 614044, were for the
S-1VB/V.

For each of these countdowns the system was serviced using the fill, flush,
bleed and fluid sample procedures used for a flight stage. The reservoir
fluid level was maintained at 85 +2 percent full volume before each firing

and did not decrease below 25 percent during hydraulic pump operation.

Pressure data were within the design limits of the pumps and verified
compensator pressure settings which had been determined in previous tests.
All reservoir pressure readings and fluid temperatures were within design

limits. GN2 pressure was acceptable for all firings. CD 614028 was cut
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off manually after 374 sec of engine operation because of a high hydraulic
reservoir oil temperature. The anomaly was caused by a defective high-

pressure relief valve.

The hydraulic system successfully positioned and gimbaled the engine in

response to simulated guidance commands.,

2.2.10 Thrust Vector Control

A vast amount of data pertinent to the engine control system performance
was obtained including engine gimbal friction, engine position, phase and

gain characteristics at both low frequencies and command amplitudes.

Evaluation of these engine gimbaling tests indicated that all test objectives
were fulfilled. The thrust vector control system closed loop response be-

haved as predicted and satisfied performance requirements.

The results of these gimbaling tests will be utilized to establish an
accurate mathematical model of the flight control system for purposes of

control system stability studies and flight performance predictions.

2.2.11 Acoustics and Vibration

Fifty-nine acoustic and vibration parameters were monitored during the
battleship program. Data from 16 countdowns (18 firings) were reduced for

this evaluation.

In general, data obtained over several firings from a particular parameter
were very repeatable. The majority of the parameters monitored, both
acoustic and vibration, exhibited high levels at ESC and ECO. These levels
ranged from 2db to 7db higher than the steady-state levels during main-
stage. At engine start, the transients persisted from ESC +2 sec to ESC +7

sec. Engine cutoff transients lasted from 0.5 to 1.5 sec after ECO.

2.2.12 Aero/Thermodynamic Analysis -

Temperatures measured during the S-IVB/IB battleship aft interstage environ-
mental tests (CD 614031 and 614032) by sensors located on the J-2 engine
thrust chamber were used to verify analytical predictions for the flight

stages and to determine whether the temperature of the engine thrust
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13



14

Section 2
Summary

chamber tubes will exceed the maximum allowable starting temperature prior
to first ignition. Predicted tube temperatures at liftoff were 210 deg R
forward of the manifolds and 170 deg R aft of the manifolds. The predicted

temperatures were in good agreement with the actual.

Common bulkhead temperatures measured during these tests could not be used
to predict flight temperatures because the battleship used a steel instead
of a honeycomb bulkhead.

" Temperature gradients across the honeycomb and along the weld seams during

the LOX loading phase were generated analytically on the basis of the

measured ullage gas temperatures.

2.2,13 Reliability and Human Engineering

Hardware failure summary of all flight critical items were prepared by
reliability engineering, and numerous recommendations have been adopted
based on human engineering evaluation of Complex Beta and the Saturn S-IVB
Battleship Vehicle.
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TEST CONFIGURATION

The test configuration consisted of the battleship test vehicle, GSE (ground
support equipment) installed on the Beta Complex test stand No. 1, and GSE
installed in the test control center (blockhouse) and the Beta Complex test
facilities.

3.1 Battleship Test Vehicle Configuration

The battleship test vehicle configuration during most of the static firing
tests was basically that of the S-IVB/IB stage. However, the configuration
was modified to that of the S-IVB/V stage during the final phase of the
tests. This modification primarily consisted of the installation of 10
ambient helium bottles to the thrust structure for LOX and LH2 tank

repressurization.

The battleship test vehicle consisted of the battleship tank assembly and
flight stage systems. The tank was a heavy-duty stainless steel, cylindrical
vessel with hemispherical heads mounted on a dummy aft interstage and the J-2
engine mounted on the thrust structure. The internal configuration of the
LOX and LH2 tanks was similar to the S-IVB flight stage except for openings
provided for special instrumentation, cameras, lighting, and emergency LOX
drain provisions. All flight stage systems were installed using either flight

or prototype flight components except for the following:
a. Telemetry system

b. Separation and range safety pyrotechnic systems
c¢. Electrical power system batteries
d. Ullage and retrorockets

e. Auxiliary propulsion system

3.1.1 Propulsion System

The propulsion systems for both S-IVB/IB and S-IVB/V battleship configurations
were the same as the flight stage except for the addition of emergency LOX

drain provisions and the domotor valve installation on the LH2 tank.
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3.1.2 Electrical Power System

The electrical power system consisted of external power supplied to the
vehicle through prototype forward and aft power distribution boxes. Two
prototype chilldown inverters were used for the chilldown pumps and one
prototype static inverter-converter supplied power for the propellant

utilization system.

3.1.3 Sequencing System

The sequencer used was a prototype version. Command signals to the sequencer
are normally received from the switch selector in the stage; however, in the
battleship vehicle configuration, the commands were received from the GSE

console in the Beta Complex test control center.

3.1.4 Hydraulic Systems

The hydraulic systems were the same as for the flight stages.

3.1.5 Propellant Utilization (PU) System

The PU system consisted of an integrated system using prototype components.

These components included the following:
a. Static inverter-converter
b. Propellant utilization electronics assembly
c. LH2 mass probe
d. LOX mass probe

e. Engine mixture-ratio valve

3.1.6 Aft Skirt and Interstage Thermoconditioning and Purge System

The aft skirt and interstage thermoconditioning and purge system was a
prototype configuration. The main variations from the flight stage configura-
tion were due to the structural differences between the battleship vehicle

and the flight stages.

3.1.7 Instrumentation

Instrumentation consisted of static test and flight-type transducers. All

parameters were transmitted to the ground recording system by means of
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hardwire. A telemetry system was not used. In addition, adequate
instrumentation was provided in the Beta Complex facilities to evaluate

the performance of the facilities.

3.2 GSE - Beta Complex Test Stand I

The GSE installed on the test stand included manually controlled battleship

GSE and electrical equipment to supply control and/or power.

3.2.1 Manually Controlled GSE

Manually controlled GSE used to control propellant and gases were as follows:
a. Pneumatic console A
b. Pneumatic console B
¢
c., Pneumatic console C
d. Gas heat exchanger

e. LOX valve control complex

f. 1LH2 valve control complex

3.2.2 Electrical GSE

Electrical GSE, with the exception of the test stand cable network and the

terminal cable network was located in the aft umbilical room and included

the following:
a. Umbilical junction box
b. Control switching rack
c. External power rack
d. 1Inverter power supply

e. Gimbal power supply

3.3 GSE =~ Test Control Center

The test control center GSE included the following:
a. Safety officers' console

b. Test conductors' console

‘21 February 1966
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c. TV control console
‘ d. Facilities control console
e. Instrumentation control console
The GSE installed in the launch control console included the following:
a. LH2 loading control panel
b. LOX loading control panel
c. Hydraulic and gimbal control panel
d. Helium control panel
e. Vehicle system control panel
f. Chilldown inverter control panel
g. Engine firing control panel
h. Automatic propellant loading set
i. GH2/GN2 control panel
j. PU control panel
k. Engine component checkout panel
The patch panel junction box and test control center cable network were used

only for the battleship test.

3.4 Beta Complex Test Facilities

The Beta Complex test facilities included the following:
a. Propellant transfer systems
b. Pneumatic systems
c. Water systems

d. Venting systems -
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TEST OPERATIONS

The countdown procedures developed during the battleship stage programs
served two basic functions: (1) to effectively and safely prepare the
stage for the test currently being conducted and (2) to develop an overall
procedure to be used for conducting the acceptance and launch countdowns

of the flight stages.

Typical S-IVB/IB and S-IVB/V battleship countdown procedures are illustrated
in figures 4-1 and 4-2. The countdowns were initiated by the usual

vehicle systems checks and propellant and pneumatic panel loading and
control setups and, as shown, proceeded through propellant and pneumatic
system loading and system checks and preparations. At approximately SLO
(simulated liftoff) =17 min, the automatic sequence was initiated with the

engine start tank chilldown sequence.

The total of approximately 3 hr 15 min were required from the initiation of

final countdown to Engine Start Command.

4,1 Purges

Before the firing countdown was initiated, the LH2 tank and engine were
purged with GH2 to remove the nitrogen remaining from the previous GN2
purges. When required, the LOX tank was purged with GN2, The remaining
system purges were conducted during the firing countdown. The system purges

are described in the following paragraphs.

4.1.1 LH2 Tank Purge

Before the LH2 tank was loaded, an initial GN2 purge was accomplished (when
required) to remove air and humidity from the LH2 tank, umbilical line, and
facility LH2 loading line, and to establish a GN2 blanket. The GN2 was
introduced through the LH2 umbilical drain and blanket pressure line into the
umbilical nozzle and vented through the LH2 tank vent-relief valve and the
GSE LH2 main fill and topping control system vent valve. The purge was
continued until the gases contained 1 percent oxygen by volume. The 20-psia

GN2 blanket was locked in the tank.

When LH2 was to be loaded, the tank, umbilical line, and facility loading line

were purged with GH2 to remove the GN2 blanket and establish a hydrogen

21 February 1966
25



Section 4
Test Operations

atmosphere in all areas that will contain liquid or gaseous hydrogen. This

’ | GH2 purge gas was obtained from console C, 2,500 to 1,500 psia ambient GH2

) supply. The purge gas flowed from console C through the LH2 tank GH2 purge
line to the LH2 tank prepressurization line and into the LH2 tank. The gas
flowed out of the tank through the LH2 fill and drain valve and umbilical
drain to the burn pond for 40 min while the LH2 tank ullage pressure was
monitored and prevented from exceeding 23 psig. After the purge valve was
closed, the tank pressure was allowed to decrease to 5 psig, the umbilical
drain was closed, and a gas sample was taken from the bottom of the tank.
(If the GN2 concentration is more than 1 percent, the purge is continued for
5 min, then resampled and, if necessary, continued until the GN2 concentration
is less than 1 percent.) The LH2 tank was then pressurized to 20 +1 psig
through the LH2 tank purge line, the LH2 tank vents were opened, and the
pressure decreased to 3 +1 psig. The LH2 prevalve was then opened, the LH2
recirculation valve was closed, and the LH2 tank was pressurized and vented

three additional times.

4.1.2 LOX Tank Purge

‘ Before the LOX tank was loaded, an initial GN2 purge was accomplished (when
required) to remove air and humidity from the tank, the umbilical line, and
the facility LOX loading line, and to establish a GN2 blanket. The GN2 was
introduced through the LOX umbilical drain and blanket pressure line into the
umbilical nozzle and vented through the tank vent-relief valve and the GSE
LOX main fill and topping control system vent valve. The vented purge gases
were sampled periodically and analyzed with a gas chromatograph. When the
gases contained 1 percent oxygen by volume, the purge was terminated, and the
tank was vented to the 22-psia blanket pressure which was maintained in the

tank.

4.1.3 LOX Chilldown Pump Purge

The LOX chilldown pump motor container was purged of air and hu&idity before
. LOX was loaded. A pressure of 49 to 54 psia was maintained in the container
when LOX was present in the LOX tank. The ambient helium used for this
purpose was supplied from the stage pneumatic control helium sphere (which was
replenished by facility helium as required) through the pneumatic power control
' module to the LOX chilldown pump purge module which maintained the required

pump container pressure.
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4,1.4 Engine Turbine Start Tank Purge

The engine turbine start tank, which used cold hydrogen gas for start opera-
tions, contained air and moisture and was, therefore, purged with helium at
50 psia for 5 min soon after propellant loading was completed. During the
automatic sequence, cold GH2 was used to chill the tank to the required
temperature before it was filled. The cold GH2 was supplied from the LH2
vaporizer in the LH2 main fill and topping control system. The purge gas
was supplied to the start tank through the start tank fill customer connect
point and was vented out of the start tank vent and relief valve through the

overboard drain customer connect point and the GH2 vent stack.

4.1.5 Engine Thrust Chamber Jacket Purge

A helium purge of the thrust chamber LH2 jacket is necessary to purge the
jacket of air and humidity and, after ground firing, to purge it of hydrogen.
The purge was accomplished by flowing helium through the jacket and out the
thrust chamber for 5 min at 100 scfm. The helium was ground supplied from

pneumatic console C at 50 psia.

4.1.6 Engine Pump Purge

A helium purge of the engine LOX turbine seal cavity, LH2 turbine seal cavity,
LH2 pump seal cavity, and gas generator injector was necessary before the
propellants were loaded to purge out air and humidity and, after the firing,
to purge out propellant vapors. The purge was accomplished by flowing 5 scfm
helium for 10 min at 105 to 130 psia from the stage pneumatic control helium

sphere.

4.2 Loading and Unloading

The battleship stages were successfully loaded with LOX, LH2, and cold helium
during all countdown which required that propellants be on board. The propel-
lant loading rates obtained averaged 2,757 and 804 gpm for LH2 and LOX

respectively (table 4-1). The following loading procedures were developed.

4.2.1 LH2 Loading

Prior to loading LH2, the LH2 tank, the LH2 umbilical, and the LH2 transfer

line were purged in accordance with the established purging procedures. The
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LH2 tank was precooled through the topping valve with the LH2 vents open

for approximately 5 min. The main fill valve was placed in the reduced fill
position and loading was continued until the mass level reached the 5 percent
level. The main fill valve was then opened and the tank was filled to the

98 percent level at the rapid fill rate of approximately 2,600 to 3,000 gpm.
At this time, the main £fill valve was placed in the reduced fill position
until the mass level was at the 99.25 percent level. The modulating valve

was then used to replenish and maintain the tank at the 100 percent level.

4.2,2 LOX Loading

The LOX tank was filled in three phases; precool, rapid fill, and topping.

The precool phase of approximately 5 to 7 min was conducted at an average
flowrate of approximately 500 gpm. During this precool phase, the LOX tank
ullage pressure was being increased, which was constantly increasing the pre-
cool flowrate. The loading rate attained was 804 gpm until the 98 percent
level was attained when the main fill valve was closed to the reduced position

and the loading completed in the reduced flow and replenish mode.

4.,2.3 LH2 Unloading

The LH2 tank was loaded by pressurizing and maintaining the LH2 tank at
approximately 35 psia, opening the main fill and fill and drain valves and the
LH2 storage tank vent valve, and draining the LH2 back into the ground storage

facility. The unloading rates achieved were between 2,000 and 2,100 gpm.

4,2,4 LOX Unloading

The LOX tank was unloaded by pressurizing and maintaining the LOX tank
between 37 to 40 psia, opening the main fill and fill and drain valves and the
LOX storage tank vent valve, and draining the LOX back into the ground storage

facility. The unloading rates achieved were between 800 and 1,000 gpm.

4.2,5 Cold Helium Loading

There are eight cold helium spheres located in the LH2 tank. These spheres
were purged with ambient helium before LH2 transfer by pressurizing to
500 psia and venting to 15 psia. Prior to loading LH2, the spheres were

pressurized to and maintained at 750 psia with ambient helium to prevent
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excessive helium pressure loss from chilldown of the spheres during loading
of the cold LH2, When 50 percent of the LH2 had been loaded, cold helium
(from the cold helium ground source) loading into the spheres was started by
pressurizing the spheres to a nominal pressure of 3,100 psia and cooling

them to 50 deg R. The pressure source remained connected until liftoff with
cold helium £ill time of approximately 40 min. The spheres were protectad
from temperature changes by the pressure relief valve and were vented through
the solenoid vent valve, both of which are in the vehicle cold helium fill

module.

4.2,6 Pneumatic Control Helium Sphere Loading

Prior to loading, the pneumatic control helium sphere and lines were purged
by filling to 500 psia and venting to 15 psia. The sphere was then filled
to 1,500 psia and allowed to stabilize for an hour, then filled to 3,000
psia. The temperature of the loaded gas was not allowed to exceed 80 deg R
during the second loading. Approximately 1 lbm of helium was loaded into

the spheres at a maximum rate of 0.003 1lbm of lhelium per sec.

4,2,7 Propulsion GSE Performance

The propulsion GSE (ground support equipment) consisted of pneumatic consoles
A, B, and C, a gas heat exchanger, and a LOX and LH2 valve control complex.
The GSE installed in the launch control console consisted of an LH2 loading
control panel, LOX loading panel, helium loading panel, GH2/GN2 control
panel, and engine firing control panel. For ease of organization, the GSE
performance will be discussed in order by function rather than by items of

equipment.

4,3 Terminal Countdown

The major events of the terminal countdown were engine conditioning; final
topping and prepressurization of the propellant tanks; and, if necessary,
final addition of helium to the cold helium spheres, the pneumatic control
spheres, and, for the S-IVB/V tests, the repressurization spheres. Reviews
of the terminal count sequence for the battleship tests indicate that the
variations consisted primarily in changes in starting times and in duration

of the engine conditioning event. The other events were essentially fixed
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in the sequence; i.e., the LOX tank was prepressurized at either 3 or 3.5 min
before SLO and the LH2 tank prepressurization was always initiated 10 sec

later than that of the LOX tank.

During the testing of the J-2003 engine (CD 614005 to 614010), the sequence
of engine conditioning events was changed twice as a result of problems
encountered (table 4-2). During CD 614005, chilldown of the LOX and .LH2 pumpa
was initiated at SLO -10 min. During this test, the ignition of the gas
generator started an uncontrolled combustion which ultimately resulted in
damage to several engine components. The violent reaction at ignition
occurred because of an oxygen-rich mixture ratio in the gas generator as a

result of a very effective chilldown by the LOX recirculation system.

After this test, the LOX and LH2 engine pump chilldown was started at
SLO -3 min 30 sec. The gas generator body was equipped with a heater and
with temperature skin patches to control and monitor the temperature within

the limits suggested by Rocketdyne.

The next change in the terminal count sequence involving engine conditioning
was made after CD 614007. During this test, the LH2 pump surged during the
engine start transient. Insufficient chilldown of the engine, particularly
of the thrust chamber jacket, was believed to have caused this incident. To
prevent recurrence, the thrust chamber jacket was extended from 20 to 51 min,
starting at SLO -50 min and ending at SLO -1 min, and the engine pump chill-
down was initiated at SLO -8 min 45 sec instead of at SLO -3 min 30 sec

(CD 614006 and 614007 had shown that the gas generator heater could control
the body temperature within the desired limits). These changes eliminated
the problem of the final pump surge in the tests discussed in the following
paragraphs. (For further discussion of the effect of these sequence changes,

see paragraph 6.1.)

During the tests with the J-2003 engine, the sequencing of chilldown and load-
ing of the engine control and start spheres was not changed. The first
battleship tests (CD 614014, 614017, 614018, and614019) with the J-2013 engine
were the special thrust chamber jacket chilldown and warmup test to investi-
gate the effect of these events on the LH2 pump performance during the engine
start transient (start tank blowdown tests; engine was not fired). In some

of these tests the pump chilldown period was also varied to examine its effect,
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See Section 6 for details of the J-2013 firing .tests (CD 614020 and 614030).
The thrust chamber jacket chilldown initiation varied from SLO -12 min to

SLO -8 min 30 sec. Variations were made to accommodate LOX tank pressuriza-
tion system chilldown procedures (also using helium) and still provide
sufficient thrust chamber chilldown. Thrust chamber chilldown was terminated
at approximately SLO +70 to SLO +72 sec. Engine pump chilldown was initiated
at SLO -5 min in all these tests.

The start tank loading time was changed after CD 614023 from SLO -4 minutes
to SLO -2 min. Also, the sphere was loaded to a lower pressure for CD 614024
and subsequent tests. A change was made to obtain required conditions at

ESC without venting the start tank during the period between end of fill and
ESC. The engine pneumatic control helium sphere conditioning procedure was
changed for the same reason. This sphere was vented to approximately

2,800 psia at SLO -2 min to prevent further venting prior to ESC.

Prior to the S~-IVB/V tests, the sequence was not changed except for the time
of termination of thrust chamber chilldown. ‘This time was established during
the count on the basis of the ambient conditions and the prediction curves

of the heatup rate for the given ambient conditions. Thrust chamber chilldown
was initiated at SLO -20 min. Because of the S-IVB/V stage mission require-
ments, the engine pump chilldown was started later in the terminal count

(SLO -2 min 30 sec) and the chilldown and fill of the engine start tank and

pneumatic control helium sphere were started earlier.

4.4 Propellant Loading GSE

The propellant loading GSE performance was acceptable. The LOX was transferred
under pressure (125 psig) from the LOX storage tank, through the LOX valve
control complex to the battleship LOX tank. The main fill and replenish flow
control was provided by the valves included in the valve control complex which
were actuated by electrical signals emanating from the vehicle propellant
system. The LH2 was transferred under pressure from the iHZ storage tank,
through the LH2 valve control complex to the battleship LH2 tank. The main
fill and replenish flow control was provided by the valves in the valve control
complex which are actuated by electrical signals emanating from the vehicle
propellant system. In addition, the valve complex controlled the transfer of
LH2 to the gas heat exchanger. The propellant. loading complex consisted of

LOX valve control complex DSV-IVB-205 and LH2 valve control complex DSV-IVB-206.
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4.4,1 GH2, GN2, and Helium Supply Systems

Pneumatic console A, Model DSV~-IVB-20l1l, performed adequately and was
acceptable., The console was used for receiving helium gas at 6,000 psig
and nitrogen gas at 2,500 psig and reducing and regulating these gases to
meet the requirements of purging, blanket pressures, checkout, countdown,
and unloading operations. Pneumatic console B, Modal DSV-~IVB-208, was usad
for receiving helium gas at 3,000 psig at 60 deg R, nitrogen gas at 2,500
psig, and hydrogen gas at 200 psig, and reducing and regulating these gases
to meet the requirements of purging, blanket pressures, checkout, countdown,
and unloading operations. Pneumatic console C, Model DSV-IVB-202, was used
for receiving hydrogen gas at 2,500 psig, nitrogen gas at 750 psig, and
helium gas at 3,000 psig at 210 deg R, and reducing and regulating these
gases, as required for purging, blanket pressures, checkout, and countdown
and unloading operations. The gas heat exchanger, Model DSV-IVB-207, was
used to receive helium gas at 3,000 and 2,700 psig, and hydrogen gas at

800 psig, from the pneumatic consoles. The heat exchanger cooled the
ambient temperature helium and hydrogen gases to 60 deg R and 210 deg R re-
spectively, and transferred the cooled gases to the pneumatic consoles B

and C for subsequent charging of the stage cold gas spheres during countdown.

4.4.2 LOX Tank Prepressurization

Near the end of the LOX tank fill operations, the LOX tank was prepressurized
with ground cold helium. Prepressurization was begun at the 99.25 percent
full point and required approximately 30 sec. The tank was prepressurized to
39.5 psia at which pressure the tank prepressurization pressure switch
actuated and closed the prepressurized valve in the LOX tank pressurization
control module. If tank pressure decreased to 37.5 psia the pressure switch

opened the valve to repressurize the tank.

4.4,3 LH2 Tank Prepressurization -

Near the end of the LH2 tank fill operations, the LH2 tank was prepressurized
with ground-supplied helium which was supplied to the vehicle at 100 deg R

and 600 psia. The helium pressure decreased the tank pressure through
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expansion upon flowing from the pressurization line into the tank. Pre-
pressurization began at the 99 percent LH2 level and required approximately
60 sec to reach 30.5 psia. At this pressure, the tank prepressurization
pressure switch actuates and closes the ground prepressurization valve. If
the tank pressure decreased to 28.5 psia, the pressure switch opened the

valve to repressurize the tank.
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Table 4-1

TABLE 4-1
PROPELLANT LOADING RATES
LH2 LOX
10 | RAPID | pgcctng | tane | roap |PAPIP | pmmssume | tave | Loap
(gpm) M?ﬁi?g? P?§§§2§E (1bm) (gpm) M?ﬁi?g? P%§2i2§E (1bm)
— ==========J
614011 2,800 39,9%XX | 700 169,9XX
614012 2,730 37,9XX | 757 183,9XX
614013 2,890 | 18.8 to 39,9XX | 765 26.5 183,9xX
20.0
614014 2,860 38,5XX | 810 188,0xX
614014 3,050 61 860 81
614015 907 82 188,0xX
614016 2,710 38,5XX | 930 150,0XX
614016 3,010 60 963 83
614017 | 2,680 38,5%X | 770 188,0%X
614018 2,750 39,5XX | 820 75 188,0XX
614019 2,680 39,5XX | 750 188,0xxX
614020 2,660 39,5XxX | 770 180,0xX
3,100 82

614021 2,870 39,5%XX | 920 188,0xX
614022 2,910 | 28,1XX | 890 188,0xX
614023 2,120 37,9XX | 575 189,6XX
614028 2,460 38,2XX | 660 192,4XX
614005 2,610 54 37,4XX 192,8XX
614006
614007
614008
614009 2,740 39,9xX | 820 169,9XX
614010 2,750 39,XXX | 815 183,6XX
Average | 2,757 804
Rate
Percent 92 80
of
Design
Rate
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- SECTION 5

SEQUENCE OF EVENTS



TABLE 5-1 (Sheet 1 of 4)

Section 5
Sequence of Events

TYPICAL S-IVB/IB BATTLESHIP FIRING SEQUENCE OF EVENTS

FUNCTION

W

LOX Recirculation Valve Closed
LH2 Recirculation Valve Closed
LH2 Recirculation Valve Open
LOX Recirculation Valve Open
LOX Chilldown Inverter Energized
LH2 Chilldown Inverter Energized
Engine Ready

Simulated Booster Liftoff

LH2 Pre-Valve Closed

LOX Pre-Valve Closed

LH2 Pre-Valve Open

LOX Pre-Valve Open

LOX Chilldown Inverter Energized
LH2 Chilldown Inverter Energized
LOX Recirculation Valve Open

LH2 Recirculation Valve Open

_LOX Recirculation Valve Closed

LH2 Recirculation Valve Closed
Start Command (GSE)

LH2 Tank Stop Pressure Control
Valve Energized

ASI Spark On

GG Spark On

Engine Ready

Helium Control Solenoid Energized
Ignition Phase Solenoid Energized
ASI LOX Valve Open

Main LH2 Valve Closed

Main LH2 Valve Open

ASI Ignition Detected

ASI Spark No. 2 OK

GG Spark No. 1 OK

PICKUP/
DROP-0OUT

DO
DO
PU
PU
PU
PU
PU

DO
DO
PU
PU
DO
DO
DO
DO
PU
PU
PU
PU

PU
PU
DO
PU
PU
PU
DO
PU
PU
PU
PU

TIME
—_——

~582.3
-582.3
-582.2
-582.2
~292.4
-287.0
~94.6
=-0*
+85.87
+85.96
+87.98
+88. 40
+93.38
+93.48
+93.51
+93.58
+93.61
+93.65
+93.67
+93.68

™ ™ T R B T B B R - I B I B A B I e

+93.68
+93.68
+93.70
+93.70
+93.70
+93.73
+93.76
+93.80
+93.85
+94.16

H 3 3 3 3 3 3 3 13 3 3

+94.16

* T = time from simulated boost liftoff

21 February 1966
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Section 5
Sequence of Events

TABLE 5-1 (Sheet 2 of 4)
TYPICAL S-IVB/IB BATTLESHIP FIRING SEQUENCE OF EVENTS

42

PICKUP/

FUNCTION DROP-OUT TIME
:===============================================:==================%==================ﬁ
AST Spark No. 1 OK PU T +94.20
GG Spark No. 2 OK PU T +94,21
Start Tank Discharge Valve PU T +94.31

Control Solenoid Energized
Start Tank Discharge Valve Closed DO T +94.47
Start Tank Discharge Valve Open PU T +94.54
Start Tank Depressurized PU T +94.67
Start Tank Pressurized DO T +94.76
Mainstage Control Solenoid Energized PU T +94.76
Start Tank Discharge Valve Control DO T +94.76
Solenoid Energized
GG Valve Open PU T +94.86
GG Valve Closed DO T +94.86A
LOX Turbine Bypass Valve Open DO T +94.98
LOX Turbine Bypass Valve Closed PU T +95.14
Mainstage OK PU T +96.13
Mainstage OK Pressure Switch No. 2 DO T +96.14
Depressurized )
Mainstage OK Pressure Switch No. 1 DO T +96.14
Depressurized
Main LOX Valve Open PU T +97.33
LOX Level, Position 12 DO T +98.0
AST Spark Omn DO T +98.01
GG Spark Om DO T +98.01
ASTI Spark No. 2 OK DO T +98.14
GG Spark No. 1 OK DO T +98.14
AST Spark No. 1 OK DO T +98.21
GG Spark No. 2 OK DO T +98.25
LH2 Liquid/Gas Differentiator 4 DO T +105.6
PU Activated PU T +108.24
LOX Level, Position 11 DO T +116.0
LH2 Liquid/Gas Differentiator 5 DO T +160.2

21 February 1966
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Section 5
Sequence of Events

TABLE 5-1 (Sheet 3 of 4)
TYPICAL S-IVB/IB BATTLESHIP FIRING SEQUENCE OF EVENTS

PICKUP/
FUNCTION DROP-OUT TIME
r===’LOX Level, Position 10 DO T +200.3
LH2 Liquid/Gas Differentiator 6 DO T +214.4
LOX Level, Position 9 DO T +228.3
LH2 Liquid/Gas Differentiator 7 DO T +268.8
LOX Level, Position 8 DO T +304.0
LH2 Liquid/Gas Differentiator 8 DO T +322.4
LOX Level, Position 7 DO T +348.1
LH2 Liquid/Gas Differentiator 9 DO T +376.4
LOX Level, Position 6 DO T +405.5
LH2 Liquid/Gas Differentiator 10 DO T +423.6
LOX Level, Position 5 DO T +450.9
LH2 Liquid/Gas Differentiator 11 DO T +478.0
LOX Level, Position 4 DO T +492.7
LOX Level, Position 3 DO T +555.4
LH2 Level, Position 2 DO T +579.2
LOX Level, Position 2 DO T +580.4
LOX Level, .Position 1 DO T +601.4
GSE Cutoff Energized PU T +602.74
Mainstage Control Solenoid Energized DO T +602,75
AST Ignition Detected DO T +602.75
Engine Cutoff Energized (Vehicle) PU T +602.76
Engine Cutoff On PU T +602.76
Ignition Phase Solenoid Energized DO T +602.77
Main LOX Valve Open DO T +602,83
GG Valve Open DO T +602.83
Main LOX Valve Closed PU T +602.87
Mainstage OK DO T +602.88
Mainstage OK Pressure Switch No. 2 PU T +602.89
Depressurized
Mainstage OK Pressure Switch No. 1 PU T +602.89
Depressurized
Main LH2 Valve Open . DO T +602.90
GG Valve Closed PU T +602,92

21 February 1966
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Sequence of Events

TABLE 5-1 (Sheet 4 of 4)

. TYPICAL S-IVB/IB BATTLESHIP FIRING SEQUENCE OF EVENTS
PICKUP/
FUNCTION DROP-0QUT TIME

Main LH2 Valve Closed ’ PU T +603.07
LOX Pre-Valve Open DO T +603.58

| LH2 Pre-Valve Open DO T +603.58

LH2 Level, Position 1 DO T +603.6
Helium Control Solenoid Energized DO T +603.73
LH2 Pre-Valve Closed PU T +603.89
LOX Pre-Valve Closed PU T +603.89
LOX Turbine Bypass Valve Closed DO T +606.88
LOX Turbine Bypass Valve Open PU T +607.97

21 February 1966
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TABLE 5-2

(Sheet 1 of 7)

TYPICAL S-IVB/V BATTLESHIP FIRING SEQUENCE OF EVENTS

Section 5
Sequence of Events

_

PICKUP/

FUNCTION DROP-OUT TIME
FIRST BURN
LH2 Recirculation Valve Closed DO T =144.7
'LH2 Recirculation Valve Open PU T =144.2
LOX Recirculation Valve Closed DO T -144.1
LOX Recirculation Valve Open PU T -144.0
LH2 Chilldown Inverter Energized PU T -137.0
LOX Chilldown Inverter Energized PU T -131.0
Simulated Booster Liftoff T -0
LOX Pre-Valve Open PU T +533.79
LH2 Pre~Valve Open PU T -534.03
LOX Chilldown Inverter Energized DO T +539.04
LH2 Chilldown Inverter Energized DO T +539.04
LOX Recirculation Valve Open DO T +539.18
LH2 Recirculation Valve Open DO T +539.20
LOX Recirculation Valve Closed PU T +539.24
LH2 Recirculation Valve Closed PU T +539.28
Start Command (GSE) On PU T +539.30
Engine Start Mag-Latch On PU T +539.30
AST Spark On PU T +539.31
GG Spark On PU T +539.31
Helium Control Solenoid Energized PU T +539.32
Ignition Phase Solenoid Energized PU T +539.33
ASI LOX Valve Open PU T +539.36
Main LH2 Valve Closed DO T +539.40
Main LH2 Valve Open PU T +539.43
AST Ignition Detected PU T +539.45
ASI Spark No. 2 OK PU T +539.79
GG Spark No. 1 OK PU T +539.79
ASI Spark No. 1 OK PU T +539.82
GG Spark No. 2 OK PU T +539.84

T = Time from simulated booster liftoff

21 February 1966
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Sequence of Events

TABLE 5-2 (Sheet 2 of 7)

TYPICAL S-IVB/V BATTLESHIP FIRING SEQUENCE OF EVENTS
|
PICKUP/
FUNCTION DROP-OUT TIME
LH2 Tank Step Press Cont. Valve PU T +541.62
Energized
Start Tank Discharge Valve Cont. Sol. PU T +542.38
Energized
Start Tank Discharge Valve Closed DO T +542.55
Start Tank Discharge Valve Open PU T +547.63
Start Tank Depressurized PU T +542.74
Start Tank Pressurized DO T +542.75
Start Tank Discharge Valve Cont. Sol. DO T +542.83
Energized
Mainstage Control Solenoid Energized PU T +542.83
GG Valve Open PU T +542.93
GG Valve Closed DO T +542.94
Start Tank Discharge Valve Closed DO T +542.95
Main LOX Valve Closed DO T +542.96
.’ LOX Turbine Bypass Valve Open DO T +543.03
Start Tank Discharge Valve Closed PU T +543.18
LOX Turbine Bypass Valve Closed PU T +543.29
Mainstage Press OK PU T +544,02
AST Spark No. 2 OK DO T +544.99
Main LOX Valve Open PU T +545.24
AST Spark On DO T +545.46
GG Spark On ’ DO T +546.04
GG Spark No. 1 OK DO T +546.13
GG Spark No. 2 OK DO T +546.13
AST Spark No. 1 OK DO T +546.13
Start Command (GSE) On DO T +551.86
Start Tank Pressurized PU T +553.95
Start Tank Depressurized DO T +553.96
LH2/Gas Differentiator 3 DO T +551.00
PU Activated PU T +554.07
®

21 February 1966
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Sequence of Events

TABLE 5-2 (Sheet 3 of 7)
TYPICAL S-IVB/V BATTLESHIP FIRING SEQUENCE OF EVENTS

PICKUP/
FUNCTION DROP-0OUT TIME
LOX Level, Position 11 DO T +578.5
LH2/Gas Differentiator 4 DO T +598.7
LH2/Gas Differentiator 5 DO T +644.7
LOX Level, Position 10 DO T +649.0
LH2/Gas Differentiator 6 DO T +693.2
Engine Cutoff Energized (Vehicle) PU T +710.42
GSE Cutoff Energized PU T +710.43
Engine Cutoff On PU T +710.43
PU Activated DO T +710.43
Mainstage Control Solenoid Energized DO T +710.44
ASI Ignition Detected DO T +710.44
Engine Start Mag-Latch On DO T +710.44
Ignition Phase Solenoid Energized DO T +710.48
ASI LOX Valve Open DO T +710.52
GG Valve Open DO T +710.54
Main LOX Valve Open DO T +710.55
Mainstage Press OK DO T +710.59
Main LH2 Valve Open DO T +710.60
Main LOX Valve Closed PU T +710.62
GG Valve Closed PU T +710.64
Main LH2 Valve Closed PU T +710.78
LOX Turbine Bypass Valve Open PU T +711.01
LOX Pre-Valve Open DO T +711.25
LH2 Pre-Valve Open DO T +711.27
LH2 Pre-Valve Closed PU T +711.59
LOX Pre-Valve Closed PU T +711.65
J-2 Engine Ignition Buss (28 VDC) DO T +713.8
LH2 Tank Vent Valve Open PU T +757.7
LH2 Tank Vent Valve Closed DO " T +757.7

21 February 1966
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Sequence of Events

TABLE 5-2
TYPICAL S-IVB/V BATTLESHIP FIRING SEQUENCE OF EVENTS

Simulated Coast Period (From 1 to 3 Orbits)

(Sheet 4 of 7)

PICKUP/
FUNCTION DROP-OUT TIME
f SECOND BURN

LH2 Recirculation Valve Closed DO T1 -590.9
LOX Recirculation Valve Closed DO T1 -590.4
LOX Recirculation Valve Open PU Tl -590.4
LH2 Recirculation Valve Open PU Tl -590.4
LH2 Chilldown Inverter Energized PU Tl -585.4
LOX Chilldown Inverter Energized PU T1 -578.6
Sequence Start Tl -13.0
LOX Pre-Valve Closed DO T1 -8.96
LH2 Pre-Valve Closed DO T1 -8.75
LOX Pre-Valve Open PU Tl -6.55
LH2 Pre-Valve Open PU Tl -6.30
LOX Chilldown Inverter Energized PU Tl -1.31
LH2 Chilldown Inverter Energized PU Tl -1.31
LOX Recirculation Valve Open DO Tl -1.17
LH2 Recirculation Valve Open DO Tl -1.14
LOX Recirculation Valve Closed PU Tl -1.11
LH2 Recirculation Valve Closed PU Tl -1.10
Second Engine Burn On Command (GSE) PU ‘1‘l -1.05
LH2 Tank Step Pressure Control Valve PU Tl -1.04
Energized

Start Command On PU T1 -1.04
Engine Start Mag-Latch On PU Tl -1.04
AST Spark On PU 'I'l -1.03
GG Spark On PU Ti -1.03
Helium Control Solenoid Energized PU Tl -1.02
Ignition Phase Solenoid Energized PU Tl -1.01
Engine Ready DO T1 -1.00

Tl = Time from second burn engine start
21 February 1966 ‘{%
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Section 5
Sequence of Events

TABLE 5-2 (Sheet 5 of 7)
TYPICAL S-IVB/V BATTLESHIP FIRING SEQUENCE OF EVENTS

PICKUP/
FUNCTION DROP-0UT TIME

ASI LOX Valve Closed ‘ PU Tl ~-0.98
Main LH2 Valve Closed DO Tl -0.95
Main LH2 Valve Open PU Tl -0.91
ASI Ignition Detected PU Tl ~-0.86
ASI Spark No. 2 OK PU T1 -0.64
GG Spark No. 1 OK PU Tl -0.64
AST Spark No. 1 OK PU T1 -0.52
GG Spark No. 2 OK PU T1 -0.50
Second Burn Engine Start Tl -0
Start Tank Discharge Valve Control Sol. PU T1 +3.07
Energized

Start Tank Discharge Valve Closed DO 'I‘l +3.25
Start Tank Pressurized DO Tl +3.46
Start Tank Depressurized PU Tl +3.45
Mainstage Control Solenoid Energized PU Tl +3.52
Start Iank Discharge Valve Cont. Sol. DO Tl +3.52
Energized

GG Valve Closed DO Tl +3.62
GG Valve Open PU T1 +3.63
Main LOX Valve Closed DO Tl +3.65
LOX Turbine Bypass Valve Open ' DO Tl +3.77
Start Tank Discharge Valve Closed PU Ti +3.88
LOX Turbine Bypass Valve Closed PU T1 +3.98
Mainstage Pressure OK PU T1 +4.69
ASI Spark No. 2 OK DO Tl +5.70
Main LOX Valve Open PU T1 +5.89
GG Spark No. 2 OK ’ DO ‘Tl +5.92
GG Spark No. 2 OK PU T1 +6.14
ASI Spark No. 1 OK DO Tl +6.15
ASI Spark No. 2 OK PU Tl +6.33
ASI Spark No. 2 OK DO Tl +6.39

21 February 1966
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Sequence of Events

TABLE 5-2 (Sheet 6 of 7)

TYPICAL S-IVB/V BATTLESHIP FIRING SEQUENCE OF EVENTS

50

PICKUP/
FUNCTION DROP-OUT TIME
ASI Spark No. 1 OK PU T, +6.47
GG Spark No. 2 OK DO T1 +6.57
GG Spark On DO Tl +6.73
AST Spark On DO Tl +6.73
GG Spark No. 1 OK DO T1 +6.78
AST Spark No. 1 OK DO Tl +6.80
Start Tank Pressurized PU T1 +11.55
Start Tank Depressurized DO Tl +11.56
Second Engine Burn On Command (GSE) On DO Tl +14.01
PU Activated PU Tl +14.71
LOX Level, Position 8 DO Tl +32.0
LH2/Gas Differentiator 8 DO T, +43.0
LOX Level, Position 7 DO Tl +70.5
LH2/Gas Differentiator 9 DO Tl +96.0
LOX Level, Position 6 DO T1 +127.8
LH2/Gas Differentiator 10 DO T, +144.3
LOX Level, Position 5 DO Tl +172.0
LH2/Gas Differentiator 11 DO Tl +196.1
LOX Level, Position 4 DO Tl +212.0
LH2/Gas Differentiator 12 DO T, +246.2
LOX Level, Position 3 DO Tl +271.0
LOX Level, Position 2 DO Tl +297.2
LOX Level, Position 2 DO Tl +297.2
Observer Cutoff On PU Tl +318.84
GSE Cutoff Energized PU T1 +318.85
Engine Start Mag-Latch On DO Tl +318.85
Engine Cutoff Energized (Vehicle) PU T1 +318.85
PU Activated DO Tl +318.85
Engine Cutoff On PU Tl +318.85
Ignition Phase Solenoid Energized DO Tl +318.87
ASI LOX Valve Open DO Tl +318.92
21 February 1966
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Sequence of Events

TABLE 5-2 (Sheet 7 of 7)
TYPICAL S-IVB/V BATTLESHIP FIRING SEQUENCE OF EVENTS

PICKUP/ {
FUNCTION DROP~-OUT TIME
e

Main LOX Valve Open DO T1 +318.95
GG Valve Open DO Tl +318.96
Main LH2 Valve Open DO T1 +319.01
Main LOX Valve Closed PU T1 +319.03
Mainstage Pressure OK DO T1 +319.03
GG Valve Closed PU Tl +319.05
Main LH2 Valve Closed PU T1 +319.18
LOX Pre-Valve Open DO T1 +319.66
LH2 Pre-Valve Closed PU Tl +319.98
LOX Pre~Valve Closed PU Ty +320.05
J-2 Engine Ignition Buss (28 VDC) DO T1 +323.2

21 February 1966
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Section 6
Engine System

ENGINE SYSTEM

Three Rocketdyne J-2 engines, S/N J-2003, J-2013, and J-2020, were used
during the battleship test program (figure 6-1). Engine S/N J-2003 was used
through CD 614010, J-2013 engine for the subsequent S-IVB/IB tests, and
engine J-2020 for the S-IVB/V tests.

Procedures were developed for conditioning and loading the engine control
helium sphere and the turbine start tank and for chilling the thrust chamber
and the LOX and LH2 pumps. Satisfactory procedures were developed for start-
ing the engines, therefore, engine start, steady-state, and cutoff performance

characteristics were established.

The several tests conducted during this program are discussed in the

following paragraphs.

6.1 Engine Conditioning

6.1.1 Engine LOX and LH2 Pump Chilldown

A satisfactory engine pump chilldown procedure was developed so that at ESC,
the available NPSH at each of the pump inlets was within the start require-

ments (paragraphs 7.2 and 8.2).

6.1.2 Thrust Chamber Chilldown

The cryogenic propellants used in the S-IVB J-2 engine require that the engine
be conditioned to the low temperatures prior to engine start. This condition-
ing is necessary in order to prevent thermal shock and gasification of the

propellants with attendant start transient problems at engine ignitionm.

6.1.2.1 S-IVB/IBE

During all the S-IVB/IB battleship firing tests, the T/C (thrust chamber)
chilldown was adequate to meet the Rocketdyne engine start requirement of

260 +50 deg R for the T/C temperature C-0199 or C-0645 (tébles 6~1 through
6-4). However, after CD 614007, this requirement was discovered to be
inadequate to guarantee a satisfactory engine start. During the engine start
transient of this countdown, an LH2 pump surge (figure 6-2) occurred which
appeared to have been caused by improper T/C conditions at engine start. A

review meeting of National Aeronautics and Space Administration, Marshall

21 February 1966
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Space Flight Center, Rocketdyne Division, North American Aviation, and
Douglas Aircraft Company brought out that the Rocketdyne requirement was
based on data obtained from tests during which T/C chilldown was continued
until engine start. During the battleship tests (CD 614005, 614006, and
614007) the T/C chilldown was terminated at SLO (simulated liftoff), approxi-
mately 90 sec before ESC. During the meeting, it was decided that until
further investigation had been made, the duration of T/C chilldown would be
extended for subsequent tests. Therefore, the T/C chilldown during CD 614008,
614009, and 614010 was initiated at SLO -50 min and continued to SLO +1 min,
leaving only 30 sec for warmup. The T/C chilldown parameters from the two
chilldown procedures are compared in figure 6-3. The LH2 pump performance
during the start transients of these firings was satisfactory as shown in
figure 6-2. Chilldown data for CD 614005 through 614009 are shown in

table 6-1. These data indicate that a 20-min chilldown duration was more

than sufficient to obtain a T/C temperature within the start requirement.

The data also show the effects on the T/C temperature of changes in cold
helium supply conditions due to control sphere loading, chilldown orifice
size, or propellant tank prepressurization. The effect of wind velocity is
also noticeable. The effects of helium supply and ambient conditions are
further illustrated in figures 6-4, 6-5, and 6-6 which present T/C chilldown
data from other battleship tests. The wind velocity was a significant and
erratic factor (figure 6-6) in the T/C. conditioning during the testing
because the engine was unprotected. (During an actual launch the engine

would be covered by the aft interstage.) The effect of wind velocity was
demonstrated during CD 614007 which was identical to CD 614006 in all signifi-
cant respects except wind speed (figure 6-3). The gréater warmup during

CD 614007 resulting from the 7.8 mph wind caused the LH2 pump surge, whereas
the 2 to 3 mph wind of CD 614006 produced no problems. During CD 614010 the
T/C temperature could not be sufficiently reduced to meet the start require-
ment, and the firing had to be postponed. The wind velocity on_that day was

20 to 30 mph.

Special tests were conducted with engine J-2013 during CD 614014, 614017,
614018, and 614019. The object of this special program was to determine the
LH2 pump performance during depressurization of the engine start tank after

the various T/C chilldown tests.

21 February 1966
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This program consisted of three phases, as outlined in Test Requests 1024,

. 1025, and 1026. Briefly the phases were as follows:
a. TR 1024

T/C chilldown tests during which the T/C temperature was reduced to
a specific level and engine sequence initiated at the temperature

level.
b. TR 1025

T/C chilldown tests during which the T/C temperature was reduced to
a specific level and engine sequence initiated after a preselected

hold time.
c. TR 1026

Turbopump and T/C chilldown tests during which the turbopump chilldown
(recirculation) time was varied while the T/C pressure and hold time

were not changed.

During these tests the engine was covered by an enclosure which wés purged to
reduce the effect of environmental changes. The data are summarized in

' tables 6-2 and 6-5. Pertinent data gathered during significant tests of this
series appear in figures 6-7 through 6-17. Figure 6-7 covers CD 614014;
significant tests of CD 614017 are represented by figures 6-8 through 6-11,
CD 614018 by figures 6-12 and 6-13, and CD 614019 by figures 6-14 through 6-17.
The data on the LH2 pump performance during these tests are shown in

figure 6-18.

The results of Phase I tests (figures 6-7, 6-8, and 6-12) indicated that the
start requirement of 260 +50 deg R for measurement C-0199 was adequate when
there was essentially no time lag between the termination of T/C chilldown and
the engine start sequence (figure 6-18). However, this requirement did not
appear to be a valid criterion when a hold time (warm up) was included before
engine start. This inadequacy is shown by the results of test A2 of

CD 614017 (figure 6-8) which included a 150 sec hold time. The temperature

of C-0199 at engine start was 300 deg R, which was within limits, but a pump
stall occurred during this test. However, during test H2 of CD 614018, the

engine went through an acceptable start transient although C-0199 indicated

21 February 1966
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339 deg R at engine start (figure 6-18). The hold time for this test was
450 sec. The unsatisfactory results of tests D2 (CD 614017) and G2-3

‘ (CD 614019) further demonstrated the inadequacy of the start criterion
(figure 6-19).

Since flight conditions include a time lag between the end of T/C chilldown
and engine start, an attempt was made to find another correlation between.
the T/C temperatures and engine start. Analysis of the test data, indicated
that a correlation existed that was based on the average of the lower-tube
temperatures (C-0678 and C-0680). As shown in figure 6-20, the test data
indicated that, without exception, a successful start was obtained when the
average lower tube temperature was 360 deg R or less, based on an LH2 lead
of 1 sec, while a pump stall occurred when the temperature was higher.

Rocketdyne test results also agree with this correlation.

Engine firing was resumed after CD 614019. During the following S-IVB/IB
tests (CD 612020 through 612030) the approach to T/C chilldown was consist-
ently cautious with respect to warmup before ESC. The warmup was limited to
less than 30 sec as it was during CD 614008 through 614010. The duration of
T/C chilldown was shorter than it was during earlier tests and varied from
. 9 to 13 min. The allotted chilldown period was sufficient when the wind

velocity was less than approximately 15 mph.

During CD 614025 the wind velocity was 20 mph. In order to obtain sufficient
chilldown, during the countdown, the normally used helium supply orifice was
replaced by a larger one, thus allowing a larger flowrate. The data of the
special chilldown test prior to the terminal count showed that sufficient

chilldown could be obtained by the increased cold helium flow.

The LH2 pump performance during all these tests was satisfactory as shown
by the LH2 pump performance plots in figures 6-21 and 6-22. Chilldown data

are summarized in table 6-3.

Three tests incorporating aft interstage environmental control in combination
with sequenced operation of the T/C preconditioning system were conducted
during CD 614031 and 614032 (figure 6-23). The environmental system consisted
of a cylindrical bag-type enclosure of the same shape and volume as the aft
interstage. It was planned to condition this enclosure with 3,500 scfm of

GN2 introduced through the environmental manifold located near the umbilical
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outlet. The gas in the enclosure was to be vented through openings near the

simulated interstage bottom. At SLO, the GN2 purge would be terminated.

During CD 614031-1, several deviations occurred. After LOX loading the GN2
flow stopped because the GN2 vaporizer malfunctioned. Consequently, the
pressure inside the bag decreased to ambient, and since the wind was blowing,
the bag started to collapse. To keep the bag under comtrol the purge was
continued with air, and as a result, frost formed on the LOX tank aft dome,
the thrust cone structure, and other components. During CD 614031-2, the
purge was also maintained after SLO because of the wind condition. Because
of these deviations, the environmental tests were repeated for CD 614032,

but ambient helium was used for tank prepressurization instead of cold

helium.

The effects of the deviations in the environmental conditioning during

CD 614031 are difficult to assess, but from the data of CD 614031-2 and
614032, it appears that these effects did not cause any significant variations
in the results of the T/C conditioning. The rate of chilldown during

CD 614032 was approximately the same as during CD 614031-2, and the heatup
rate during the simulated boost period was the same (according to the T/C
temperature) or even lower (according to the lower tube temperature) during

CD 614032 which more closely simulated flight conditionms.

The effect of using cold helium for prepressurization can be seen by comparing
the data of CD 614031-2 with those of CD 614032. 1In CD 614031-2 and 614032,
the gas heat exchanger cross—over valve, which connects the two sets of

helium coils in the heat exchanger, was open. Data of CD 614031-2 show the
adverse effect of an increase cold helium demand for prepressurization on T/C
chilldown. Data of CD 614032 do not show any change in the T/C temperature
profile because ambient helium was used for prepressurization. In CD 614031-1
the cross-over valve was closed; therefore, prepressurization had no effect.
Comparison of the data of the three tests shows that the chilldown rate was
somewhat higher during CD 614031-2 and 614032 than it was during CD 614031-1,
in which only four heat exchanger coils were employed (figure 6~23). The

helium supply orifice temperatures also indicate the difference.

Although the use of 12 heat exchanger coils enhanced the rate of T/C chilldowm,

much of this advantage over the four-coil operation appears to have been
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offset by the negative effect of prepressurization. At the end of chilldown,
' the T/C and lower tube temperatures (C-0678 and C-0680) were somewhat lower
during CD 614031-2 as compared with CD 614031-1; but at engine ignition the
tube temperatures were practically the same and the T/C temperatures differed
by only 10 deg R. Since all these temperatures were well within the require-
ments for engine start, the difference in the operation of the T/C chilldown

system seems minor.

The results of this chilldown program (table 6-5) did not indicate that other
variables affected engine start. For instance, the time for engine pump
chilldown recirculation was varied from approximately 2.5 to 30 min but these
changes did not seem to affect the engine start of test D3 and G2-1 of

CD 614019 (table 6-2 and figure 6-18). The effect of engine start tank condi-
tions could not be established because these conditions were essentially

constant from test to test.

6.1.2.2 S-IVB/V

The S-IVB/V tests were conducted during CD 614033 through CD 614035 and
CD 614041 through CD 614044. The major differences, as compared to the

‘ S-IVB/IB tests, were the longer boost period (540 sec vs 90 sec for S-IVB/IB)
and the longer LH2 lead times (3 sec vs 1 for S-IVB/IB). The longer LHZ lead
was included to compensate for warmup that will occur during the 9-min boost.
The chilldown was initiated at SLO -20 min. Termination time was determined
during the test on the basis of the prevailing wind conditions and prediction

curves for warmup as a function of wind velocity.

During this series of tests, the lower tube temperatures (C-0678 and C-0680)
were used as a criterion for T/C conditioning. The redline value was

460 deg R. During the final test (CD 614044) the average of the lower
temperatures exceeded the redline by approximately 30 deg and the T/C tempera-
ture (C-0199) exceeded its redline of 310 deg R by approximately 60 deg R, but

the LH2 pump performance was still satisfactory. ~

Figure 6-6 also presents C-0199 and lower tube temperature profiles for
CD 614044 in this series of tests. During several of the tests, wind speed
and direction readings at the test stand were collected at increments' of

1 min or less so that the specific effect of wind speed on T/C temperatures
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might be observed. This reveals an obvious and pronounced effect of
momentary wind speed variation on T/C temperatures. Specifically, tempera-
ture redlines were exceeded at ESC (CD 614044) because of the momentary
increase in wind speed after T/C chilldown termination and before ESC. The
warmup rate at the average wind speed during T/C chilldown would have
precluded the excessive temperature rise that occurred. Table 6-5 is a

summary of countdowns in this series.

The LH2 lead of several seconds during start sequence for both burns in
S-IVB/V tests is excellent conditioning for successful engine starts.
Figure 6-24 illustrates that a stall was not approached during tests under

such conditions.

6.2 Engine Start Tank and Control Sphere Conditioning

The engine start tank and control sphere are supplied and conditioned by the
GSE pneumatic systems. GH2 is supplied at 1,500 psia, cooled in the gas heat
exchanger, and delivered through console C to the engine start tank. The
control sphere helium is cooled in the heat exchanger and delivered through

console C at 3,000 psia.

6.2.1 S-IVB/IB

The objectives of the S-IVB/IB engine control sphere and start tank testing
were to develop procedures for conditioning the sphere and tank to demonstrate
that the required temperatures and pressures could be provided at ESC (Engine

Start Command).

The engine start requirements for the engine start tank and control sphere

were as follows:

Pressure (psia) Temperature (deg R)
Start Tank 1,250 +50 210 +50
Control Sphere 1,800 to 3,000 210 +50

Prior to the initiation of start tank chilldown, the control sphere was
pressurized to approximately 1,000 psia to prevent it from collapsing as it
was cooled down by the temperature decrease in the start tank. The engine

start tank loading (figure 6-25) was accomplished by flowing cold GHZ through
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the tank and out the vent valve until the required temperature was reached.

‘ At this time, the vent valve was closed and the tank was pressurized.

During the testing of the J-2003 engine (CD 614005 through CD 614010), the
engine start tank chilldown was initiated at SLO =16 min and continued until
loading was initiated at SLO =5.5 min. The control sphere was loaded
(pressurized to 3,000 psia) at SLO -9 min. The start tank requirements were
met during all tests, although venting the sphere and tank in the period
between the end of fill and ESC was usually required to attain proper
pressure. The loading procedure was changed during the J-2013 engine tests
(CD 614020 to CD 614030). Prior to CD 614025 the start tank chilldown was
initiated at SLO -17.5 min and continued until SLO -4 min when start tank
loading was initiated. The control sphere was pressurized to 1,000 psia
prior to the initiation of start tank chilldown, and loading was completed

at SLO -4.5 min. Starting with CD 614025, the chilldown procedure was altered
to avoid the necessity of venting the sphere and tank. This was accomplished
by reducing the supply pressures and extending the start tank chilldown
period an additional 2 min until SLO -2 min. The control sphere was pres-

surized to 3,000 psia before the initiation of start tank chilldown.

The engine start tank and control sphere configurations used with the J-2013
engine differed from those used with the J-2003 engine in that the control
sphere vent was located within the engine pneumatic package. As shown in
figure 6-25, this vent was located at the inlet to the pneumatic package on
the J-2003 engine. This change in vent location resulted in a reduction of
the control sphere flow during chilldown venting. Table 6-6 is a summary of
the test results shown in figures 6-26, 6-27, and 6-28. Items shown in

table 6-6 that are of particular interest include: (1) the degree of compli-
ance with required temperatures and pressures at ESC, (2) the temperature
and pressure changes due to warmup and venting between end of fill and ESC,

and (3) gas consumption during start and cutoff transients.

Differences in sphere temperatures and pressures both before aﬂd after fill
are due to variations in GSE gas heat exchanger performance, heat transfer
between control sphere and start tank, and chilldown duration and sequence.
Warmup rates for the start tank during the hold period between fill and ESC were

found to be approximately 3 deg/min as shown by the data presented in the

‘ following table:
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Warmup Rate
Countdown Time (sec) SLO (deg R) (deg/min)
614025 150 208 to 216 3.12
614030 150 218 to 230 4.04

Compliance with Rocketdyne-specified requirements for start tank and control
sphere temperatures and Pressures at ESC was successfully damonstrated
throughout the battleship test program. This is shown by a comparison of

the Rocketdyne requirements with lines 6 and 11 of table 6-6. The GSE supply
system for preconditioning and filling the start tank and control sphere was
proved to be acceptable during the test program. Typical GSE performance
data, such as GH2 supply orifice and heat exchanger temperatures and pres-
sures are shown in figures 6-29 and 6-30. Start tank and control sphere
loading was acceptable. Table 6-6 shows that the start tank GH2 mass at

ESC varied from 4.04 to 5.19 1lbm. Line 18 of the table shows that start tank
usage during the engine start sequence was 3.13 to 4.12 1lbm of GH2. Start
tank temperature differential during depressurization at engine start

averaged 60 deg R.

The mass consumed from the control sphere during propellant valve operation
at ESC and ECO is shown on lines 18 and 19 of the table. Values ranged from
0.03 to 0.23 lbm of helium. Because of data inaccuracy, the calculated

consumptions should be considered as approximate.

6.2.2 S-IVB/V

The objective of the S~IVB/V tests was to obtain the required pressures and
temperatures in the engine start tank and control sphere at engine start for
both first and second burn. These start requirements (figure 6-31) were met

for both burns during the three S-IVB/V countdowns that were evaluated.

The chilldown procedure was the same for all three tests evaluated (CD 614034,
CD 614043, and CD 614044). Chilldown was started at ESC -34 min and continued
until ESC -20 min. The control sphere was pressurized to 3,000 psia at

ESC ~33.5 min. Both the start tank and control sphere were chilled by flowing
cold GH2 through the start tank. The supply was regulated to 940 to>980 psia

for these tests, which resulted in a chilldown flowrate of 3 lbm/sec. At the

end of the l4-min chilldowns, the start tank temperatures ranged from 109 to
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122 deg R for the three tests. When chilldown was terminated, the start tank
temperature was still decreasing, indicating that a lower temperature would

have been obtained if chilldown had been continued.

Chilldown was terminated and start tank fill was initiated at ESC -20 min by
closing the start tank vent valve. The start tank was filled in approximately
15 min to a pressure that was 350 psi less than that desired at ESC to allow
the pressure to increase to the start requirement by ambient warmup of the

GH2 (figures 6-32 and 6-~33). This procedure was followed in an attempt to
avoid venting the start tank prior to ESC. However, venting was necessary as
the temperature at the end of fill was lower than predicted because of the

low GSE supply temperature (figure 6-34). The temperature rise after fill
(2.7 deg R/min) agreed with that predicted, but the percentage of temperature
change was larger and resulted in a pressure increase that was greater than

expected.

At ESC, the start tank was reduced to 200 psia. Recharging of the tank
began immediately after blowdown. At first burn engine cutoff, the start
tank had been recharged to 1,195 to 1,330 psia or to 6.4 to 7.5 lbm

(table 6-7) which was more than sufficient for second burn engine start.
During the simulated coast period, the start tank temperature increased with
time due to heat input. The pressure was maintained relatively constant
during this time by continuously venting the tank. At the time of second
burn engine start, the mass in the start tank had been decreased to 3.9 to

4.6 lbm.

The start tank pressure and temperature (figure 6-35) were well within the
restart requirements. Second burn engine start depleted the tank to 215 to
245 psia. During second burn, the start tank was again recharged to 5.2 to
5.5 lbm. The mass recharged during second burn was less than first burn

because of the higher temperature during second burn.

The control sphere conditions were within the start requirement for both
first and second burn for all three countdowns (figures 6-34 and 6-35).
During start tank chilldown the control sphere was also being chilled. The
control sphere temperature was considerably higher than the start tank
temperature, but was decreasing at a faster rate and the temperatures were

converging. At the end of chilldown, the control sphere temperature was
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175 to 185 deg R which was 65 deg warmer than the start tank. After the

. start tank was filled, its temperature increased while the control sphere
temperature continued to decrease, steadied out, and then started increasing
slightly. The sphere temperatures continued to converge until, at ESC -7 min,
they were the same. From then until engine start, both the sphere and tank

heated up at the same rate.

During these S-IVB/V battleship tests, the average helium consumption from
the control sphere was 0.32 1lbm during engine start and 0.06 1lbm during

engine cutoff. Data from these tests are summarized in table 6-7.

6.3 Engine Performance

Six countdowns, 614023, 614025, 614028, 614030, 614043, and 614044 formed

the basis of analysis of the J-2 engine performance during the S-IVB
battleship test program. These tests were selected because they most clearly
demonstrated the battleship engine performance program test objectives. The
first four tests were performed on the S-IVB/IB configuration and utilized
engine S/N J-2013, while the latter two tests were performed on the S-IVB/V

. configuration and utilized engine J-2020.

The test objectives of the S-IVB battleship program for the engine were

as follows:

a. Establish the engine circulation chilldown procedure and evaluate

the operation of the chilldown system

b. Determine flow and pressure characteristics in the low pressure

propellant ducts

¢c. Determine engine thrust buildup, rated operation, and shutdown

characteristics

d. Evaluate engine start and mainstage firing under simulated

orbital conditions -
e. Evaluate LOX depletion cutoff

f. Determine the cryogenic calibration of the PU system by the

propellant "'flow integral' method.

All of these objectives were met satisfactorily before the conclusion of the

. battleship program.
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6.3.1 Engine Analysis

. The engine performance was analyzed by reconstructing the various tests from
Engine Start Command to cutoff. The engine performance level in the form of
"Tag Values" and other pertinent coefficients, as well as the engine
acceptance data, were provided by Rocketdyne in the engine log book. Several
computer programs were developed which utilized the log book relationships
to convert measured data into performance values. The AA89 program was the
most advanced of these at the time of the battleship tests; therefore, tﬁe
majority of the reconstruction of each test was performed by this program.
Future analyses will employ statistical averages of the reconstructions of
all available programs. Such a technique of relating the engine and stage
performance will be the basis of the 'flow integral' method of cryogenic
calibration of the propellant tanks. Sophistication of this technique was

developed during these tests.

6.3.1.1 Start Transients

A computer program, F839, which was used to analyze start and cutoff transients
for the S~-IV stages, was modified for the S-IVB stage. The start impulse

‘ (I start) was determined from the equation

T2
IStart B J/. Fo= At Pc Cf
T

WHERE Tl = Time of Engine Start Command
T2 = Time 90 percent thrust was reached
F = Thrust
At = Thrust Chamber Throat Area
Pc = Thrust Chamber Combustion Pressure
Cf = Thrust Coefficient

Cf as a function of chamber pressure was determined during the battleship

program from flowmeter data. A plot of the relationship is shown in

. figure 6-36. This function was used for the transient portions of the tests.
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the S-IVB/IB system. As can be seen, all starts are practically identical
in shape with the exception of that for CD 614023, which as shown in the data
and the table below had a lower PC (thrust chamber pressure) rise rate during

the final portion of the approach to mainstage.

The 90 percent of steady-state level for the engine operation was defined

as a PC level of 618 psia.

The time from Engine Start Command to the time of 90 percent steady-state

(T, - Tl), the start impulse, and the time from the first chamber pressure

2
rise to T2 are as follows:
Time CD 614023 CD 614025 CD 614028 CD 614030
Tl to T2 (sec) 3.22 2.96 2.95 2.90
Impulse (lbf-sec) 202,176 133,710 133,026 138,150
Rise Time (sec) 2.22 1.75 1.77 1.75

CD 614043 and CD 614044 were conducted under simulated orbital conditioms.

The test included a simulated S-IVB/V boost phase, a first burn of the S-IVB/V,
simulated orbital coast period, and a second S-IVB/V burn. The second burn
of CD 614043 and CD 614044 occurred after simulated three-orbit and one-orbit

coast periods. Figure 6-38 shows the chamber pressure start transients of

CD 614044. An analysis was made of the available data with the following
results:
CD 614043 CD 614044
Time
i 1lst Burn 2nd Burn 1st Burn 2nd Burn
T, to T, 5.22 6.26 5.22 6.38
(sec)
Impulse 141,295 141,305 141,280 141,292
(lbf-sec from
Tl to TZ)
Time from first | 1.61 1.62 1.6 1.63
pressure rise to |
90% thrust (sec) i
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The first burn (Tl to T2) was longer on the S-IVB/V tests because an
additional 375-sec hold was inserted after SLO to account for the S~II stage

burn time. The second burn (Tl to TZ) was longer because of the hold

simulating orbital conditions. However, the times from the initial pressure

rise to 90 percent chamber pressure on all transients compare very well.

There was no measurable impulse prior to the initial pressure rise on the
S-IVB/IB tests, whereas the long hydrogen leads for chilldown purposes on
the S~IVB/V tests contributed an average 2,000 lb-sec additional start

imbulse.

As expected,lconsiderable sideloading occurred during the start transients
(figure 6-39); therefore, when stable operation was reached (approximately
ESC +12 sec), restraining arms were used to restrict the entire motion until
the sideloads ceased. The battleship program demonstrated that the engine
start characteristics were not adversely affected by any S-IVB operating

conditions.

6.3.1.2 Steady-State Operation

The battleship tests were conducted under a range of conditions simulating
the probable conditions that might occur for the flight. The J~2 engine
operated satisfactorily during all tests. Two tests (CD 614023 and CD 614028)
were conducted with an overload of LOX to cause a positive PU valve excursion
during the initial portion of the test. ‘One test (CD 614025) was conducted
with an overload of LH2 to cause a negative PU valve excursion during the

initial portion of the test. A nominal loading was attempted for omne
S-IVB/IB test (CD 614030) and for both S-IVB/V tests. The loading values for

the six tests were as follows:

68

Countdown

S-IVB/IB

S-IVB/V

614023

614025

614028

614030

Nominal
Load

614043

614044

Nominal
Load

LOX (1bm)

LH2 (1bm)

189,800

36,980

184,115

39,125

192,556

38,180

187,650

38,487

188,053

38,469

195,768

44,917

193,200

42,800

193,227

42,793

The S-IVB/V values included an excess 3,250 1bm LH2 which was to be boiled
The LOX boiloff during

off during a three-orbit simulated coast period.

this same period was predicted to be 375 1lbm and was included in the load.
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The PU system was biased so that there would be no reaction to the excess

propellants. The boiloff bias was removed after the first burn.

The normal open loop operation time (PU system not active) is 6 sec, but the
time was extended because of the uncertainty of the first movement of the PU
valve and subsequent uncertainty of the initial mixture ratio. Rocketdyne

data indicate that a low mixture ratio increases the side loads during the

start transient. A condition was established whereby the test would be
terminated if the side loads did not subside below 3,000 1bf within 10 sec
of ESC. In order that a normal subsidence be assured, the PU system was
not activated until well after the limiting side load conditions had been
met. The times from Engine Start Command to PU activate for the six tests

discussed here are as follows:

CD 614023 15.002 sec
CD 614025 f 14.569 sec
CD 614028 i 15.162 sec
CD 614030 13.839 sec
CD 614043

(1st Burn) 14.7 sec

(2nd Burn) 15.75 sec
CD 614044

(lst Burn) 14.679 sec

(2nd Burn) 15.82 sec

The S-IVB battleship tests demonstrated that there was no problem and all

subsequent tests had or will have the normal open loop time.

When the PU system was activated, almost identical performance response

was noted for CD 614023 and CD 614028. Typical performance data are presented
in figure 6-40. In both instances the PU valve went to the stop in the LOX
rich position which was approximately +30 deg. The valve remained in this
position until the condition of LOX overload was eliminated. During this

period the average engine performance was as follows:
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f CD 614023 CD 614028
. Thrust (1lbf) , 227,970 227,790
Wt (lbm/sec) % 540.88 540.4
Isp (sec) % 421.48 421.52
EMR g 5.643 5.640

In CD 614025 (figure 6-41) the performance response was opposite in direction
but approximately equal in amount at PU activate, as compared to CD 614023
and CD 614028. The PU valve went to the stop in the low mixture ratio
position and remained there until the LH2 overload condition was eliminated.

During this period, engine performance was as follows:

Thrust (1bf) 172,610 |
Wt (lbm/sec) 411.1
Isp (sec) 427.17
EMR 4.56
. A near nominal loading was achieved for CD 614030. It was predicted that

normal operation for a nominal load would be a short low—-mixture ratio
excursion by the PU valve. The validity of this prediction can be seen in
figure 6-42, which shows that the PU valve and engine performed as predicted.

Performance during the period of correction for initial mass error was as

follows:
Thrust (1bf) 172,800
Wt (lbm/sec) 399.43
Isp (sec) 432.61
EMR 4.40

A performance comparison of open loop operation to the steady-state conditions
during closed loop operation prior to PU cutback for the tests showed the

following:
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| CD 614023 | CD 614025 | CD 614028 | CD 614030
Thrust (1bf) | +24,660.6 E -27,565 | +25,231 -30,512
We (lbm/sec) | +63.17 i -65.239 +64,.705 ~78,309
Isp (sec) ; -4.12 i +0.635 -4.,297 +7.038
EMR { +Q,539 | -0.509 +0.556 -0.707

The evaluation of CD 614025 revealed a discrepancy in the influence coeffi-
cients. The positive specific impulse change as a function of the negative
EMR change was not in agreement with the engine log values or the manu-
facturer's acceptance test. The necessary corrections were made as can be

seen in the values for CD 614030,

Study of the available data indicates near-nominal operation of the PU system
during both '"burms' of CD 614043 which simulated a three-orbit coast period.
The values given for loaded propellants on this test were PU indicated values
with no flow integral verification. There was nothing during either burn to

indicate anything other than normal engine system performance.

The performance was also quite normal for the first burn of CD 614044. The
PU system indicated near nominal loads for a one-orbit coast simulation.
Near the end of the coast period, an attempt was made to adjust the LOX load
to the desired 126,000 lbm for start of second burn; 2,000 lbm LOX were
mistakingly dumped causing a very large equivalent LH2 overload. At PU
activate, the PU valve traveled to the stop in the LH2 rich position and
remained there for the duration of the test. The performance of the engine
responded accordingly giving low EMR (4.631), low thrust (185,500 1bf) and
high specific impulse (428.2 sec). The chamber pressure, which is a good
indication of the engine performance, is shown for both burns of CD 614044

in figure 6-43.

The flight function of the S-IVB/V vehicle is very precise-and delicate. An
exact evaluation of ground test and correlation to a flight vehicle would at
best be difficuit. The data available for the battleship tests were not
conducive to this type analysis. A quantitative system evaluation was
considered satisfactory for the battleship tests and demonstrated the stage

capability of responding to a given command.
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6.3.1.3 Cutoff Transients

A depletion test involving either propellant, in the sense that the tank

was empty at cutoff, was not possible with the J-2 engine., Cutoif on all

the tests discussed herein was initiated manually either when LH2 pump NPSH
was below the specified minimum or the LOX volume reached the 1 percent level
in the tank. Either of these conditions was defined as depletion. Evaluation
of engine performance at these conditions showed that the transients were
normal and consistent with the manufacturer's acceptance tests. Typical
cutoff transients of the thrust chamber pressure are shown in figure 6-44.
The perturbations seen at the end of the engine thrust chamber decay
period do not represent a detriment to the performance. The perturbations
were also noted on the manufacturer's data. Analysis of the cutoff
transient was aided by the F839 computer program. Cutoff impulse was
determined to 5 percent of the chamber pressure value at the cutoff signal.

Cutoff transient values are shown in the following table.

T

CD | 614023614025 | 614028 614030 614043 614044

lst Burn!2nd Burnjlst Burn{2nd Burn

T* | 0.963| 0.663! 0.670] 0.630!
|

I%%|89,330|351,945|38,15932,868 55,200 53,960 |52,010 |55,141

|

*Time from cutoff command to 5% thrust (sec)

0.910 0.85 0.829 0.890

*%Cutoff impulse from cutoff command to 5% thrust (lbf-sec)

The data problems noted in paragraph 6.3.1.1 handicapped the cutoff analysis
also. Definitions which would eliminate factors contributing to the wide
range of values had not been made at the time of this report. The analysis

is expected to be satisfactory for the production tests.

6.3.2 Gas Generator Performance

With one exception (CD 614005), there were no failures directly attributable

to the gas generator.

The gas generator failure on CD 614005 occurred just after mainstage signal.
There was an extremely sharp pressure rise in the gas generator combustor

and the LH2 injector manifold. A similar rise in pressure was noted at’

21 February 1966



Section 6
Engine System

the gas generator LOX poppet valve immediately thereafter. Tae LOX

poppet valve was destroyed, the number 2 spark plug was blown from its
threaded shell, &nd the LOX injector sense line was burned through and
partially consumed. The LOX poppet was blown through the LH2 turbine
inlet manifold, coming to rest in the start tank discharge line. Two

turbine blades in the LH2 turbine were destroyed.

The data indicated that failure occurred as a result of overcooling of the
gas generator during recirculation chilldown. Corrective measures have
been taken to insure that overcooling does not recur. Four tests were
selected as representative of the battleship test program: CD 614010,

CD 614025, CD 614030, and CD 614043. Typical data from these tests
(figures 6-45 and 6-46) indicate that the gas generator operated normally -
during engine operation. In all cases, the gas generator exhaust gas
temperature remained within desired operating limits and did not exceed
the following redline temperature values. The gas generator exhaust gas
temperatures were above 710 deg R within 0.5 sec after mainstage control
signal. The maximum temperature limits of 2,460 deg R between 0.5 and

3.5 sec after mainstage control signal, and 1,910 deg R for the remainder

of the test, were not exceeded.

A method of obtaining the gas generator propellant flowrates as a function
of time was supplied by the engine manufacturer and used in calculating

all mass flowrate data.

The exhaust gas temperatures, pressures, and propellant mass flowrates all
passed through a transient period which approached steady-state operation
within 5 sec of engine start. The steady-state values vary slightly, but

were close to the mean values listed by the engine manufacturer.
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Figure 6-3 Effect of Changing Thrust Chamber Chilldown Procedures
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CD 614024, RUN 3
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Figure 6-5 Wind Effect on T/C Chilldown Temperature Profile
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